POTASSIUM SOLUBILIZING BACTERIA: A PROMINENT NUTRIENT BOOSTER IN SOIL

Article Id: AL202094

Princy Thakur¹ and Jhutan Debnath¹*

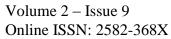
¹Department of Soil Science and Agricultural Chemistry, Uttar Banga Krishi Vishwavidyalya, Pundibari, Cooch Behar, West Bengal, India

Email: jhutandebnath1234@gmail.com

otassium (K) is the third important plant nutrient after N and P and is a fundamental macronutrient for plant growth (Parmar *et al.*,2013). In soil, K is the most abundant macronutrient and is the 7th most abundant element in the lithosphere (2.6%) (Etesmi*et al.*, 2017). It can be more easily leached in the soil system, and in Indian soil total, K content varies from 0.5 to 3.0%.

Suitability for adaptation of Potassium Solubilizing Bacteria (KSB)

- K biofertilizers are compatible with biopesticides and other biofertiliers.
- Self-life of this biofertilizer is stable for 1 year from the date of manufacturing.
- It is suitable for application on cereals, millets, pulses, forage crops, spices, medicinal crops, ornamental crops and all other crops.
- K soluble Bacteria are available in different formulations (powder, liquid).


Strains of Potassium Solubilizing Bacteria (KSB)

It is known that Potassium Solubilizing Bacteria (KSB) can solubilize K bearing minerals and convert the insoluble K to soluble forms of K available to plant uptake. Many Bacteria such as *Acidothiobacillus ferroxidans*, *Paenibacillus* spp, *Bacillusmucilaginosus*, *B.edaphicus* and *B.circulans* have the capacity to solubilize K minerals (Etesami *et al.*, 2017).

Main Mechanisms of Potassium Solubilizing Bacteria (KSB)

Following are the various processes by which KSB helps in solubilizing K bearing minerals and convert the insoluble K to soluble Forms of K.

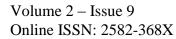
• **Acidolysis:** Secretion of various enzymes to solubilise essential nutrients.

Www.agriallis.com

- Chelation: Bonding of ions and molecules to metal ions. They are mostly organic compounds.
- Exchange reactions: It enhances the dissolution of K ions by providing protons from other cations like Ca²⁺.
- **Complexolysis:** Complex formation organic acids and metal ions such as iron, calcium help to solubilise ion. K solubilisation occurs by complex formation between organic acids and metal ions as Fe ²⁺, Al³⁺, Ca²⁺ (Koushalya, 2018).
- **Production of Organic Acid:** Acid like citric acid, malic acid, oxalic acid, ferulic acid, syringic acid produced by KSBs (by organic matter decomposition) enhances the K solubility (Setiawati, *et al.*, 2016). The product of decomposed organic matter such as acetate, citrate and oxalate can increase mineral dissolution in soil.

Isolation of KSB: Potassium solubilizing microorganisms can be isolated by serial dilution methods using Aleksandrov medium.

Method of Application


- **Seed Treatment:** Mix 10g of biofertilizer with 10g of crude sugar insufficient water to make a slurry and coat 1 kg o seeds.
- **Seedling Treatment:** Mix 100g of biofertilizer with sufficient quantity of water and organic manure to form a slurry. The seedlings are dipped in this slurry for 30 minutes prior to planting get attached to the roots.
- Soil Application: Mix 3-5 kg/acre of K biofertilizer with compost and apply to an acre of soil.
- **Drip Irrigation:** Mix 3 kg/ acre of K biofertilizer in drip stream.

Advantages of Potassium Solubilizing Bacteria (KSB)

- Effectively mobilize unavailable potassium ions and make it available to the plants.
- Natural potassium solubilization improves both plant and soil health and also aids in soil remediation.
- The increase in the beneficial microbe population in soil improves soil health.
- Eco friendly.

Limitations of Potassium Solubilizing Bacteria (KSB)

• Not easily available in the market and lack of awareness in farmers.

- Prone to contamination with other chemical fertilizers and pesticides.
- Surplus products may be disposed of in croplands.
- Smoke inhale during application can be harmful.
- Direct incidence may cause irritation, and therefore it is recommended that the operator should use protective gear (gloves, apron, mask, eye mask).

Conclusion

Using KSBs enhance the use efficiency of K and also mitigate the application of chemical K fertilizers as India is the importer of the potassic fertilizers. It is safe to use along with other biofertilizers. It is an effective component in IPM and INM programs.

References

Etesami, H., Emami, S.,&Aikhani, H. A. (2017). Potassium solubilizing Bacteria (KSB): Mechanisms, promotion of plant growth and future prospects- A review. *Journal of Soil Science and Plant Nutrition*, 17(4),897-911.

Parmar, P.,&Sindhu, S.S.(2013). Potassium Solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. *Journal of Microbiology Research*, 3(1), 25-31.

Setiawati, T. C.,&Mutmainnah, L. (2016). Solubilization of Potassium containing mineral by microorganisms from sugarcane rhizosphere. *Agriculture and Agricultural Science Procedia*, 9, 108-117.