

Article Id
AL04484

Email

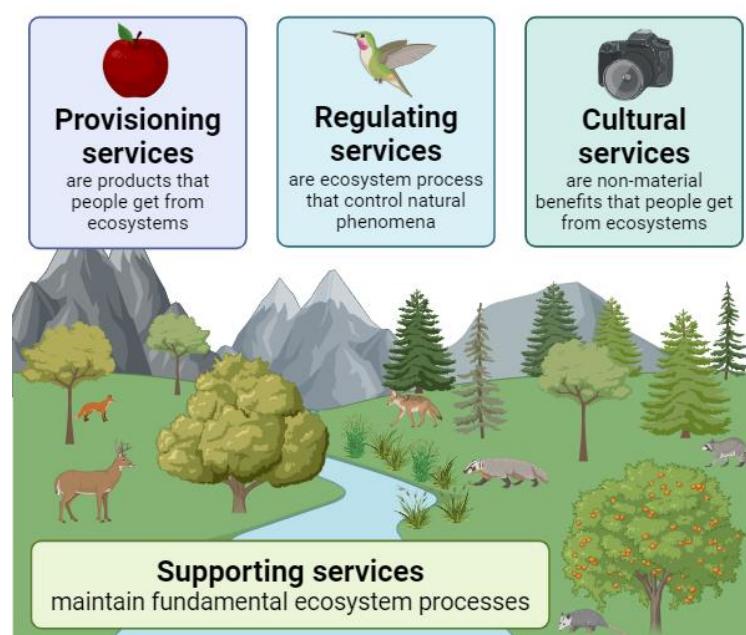
OPEN-SOURCE GEOSPATIAL PLATFORMS FOR ECOSYSTEM SERVICE ASSESSMENT: TOOLS, FRAMEWORKS, AND APPLICATIONS IN NATURAL RESOURCE MANAGEMENT

¹Basavareddy*, ²Dinesh Kumar, ¹Paramesha V and ¹Sreekanth GB

babloobasavareddy@gmail.com

¹ICAR- Central Coastal Agricultural Research Institute, Old Goa, Goa- 403402, India

²Department of Natural Resource Management, College of Horticulture and Forestry, Central Agricultural University (Imphal), Pasighat, Arunachal Pradesh- 791102, India


The world is undergoing rapid environmental change due to climate variability, land-use change, population growth, and increasing pressure on natural resources. Forests, agricultural lands, wetlands, and coastal ecosystems are being altered at an unprecedented pace, reducing their ability to provide essential benefits such as food, clean water, climate regulation, and protection from natural hazards. These benefits, known as ecosystem services, are fundamental to human well-being and sustainable development, yet they are increasingly under threat. The ecosystem services concept gained global recognition through initiatives such as the Millennium Ecosystem Assessment and was later strengthened by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. This framework helps explain how changes in ecosystems directly affect livelihoods, economies, and social stability. However, many ecosystem service assessments have traditionally relied on field surveys, expert opinion, or static maps, which often fail to capture spatial variation and long-term changes across large landscapes.

In the current era of global change, there is a growing need for clear, timely, and spatially detailed information on ecosystem services. Decision-makers require tools that can monitor ecosystem condition over time, identify areas of service loss or improvement, and support informed planning and management. This need has driven a shift toward modern, data-driven approaches that can assess ecosystem services consistently across regions and time, highlighting the importance of open-source geospatial platforms in natural resource management.

Conceptual Framework of Ecosystem Service Assessment

The concept of ecosystem services provides a structured way to understand how nature supports human societies. It was formally introduced through the Millennium Ecosystem Assessment and later refined by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. At its core, the framework recognises that ecosystems do not only have ecological value, but also deliver a wide range of benefits that contribute directly and indirectly to human well-being.

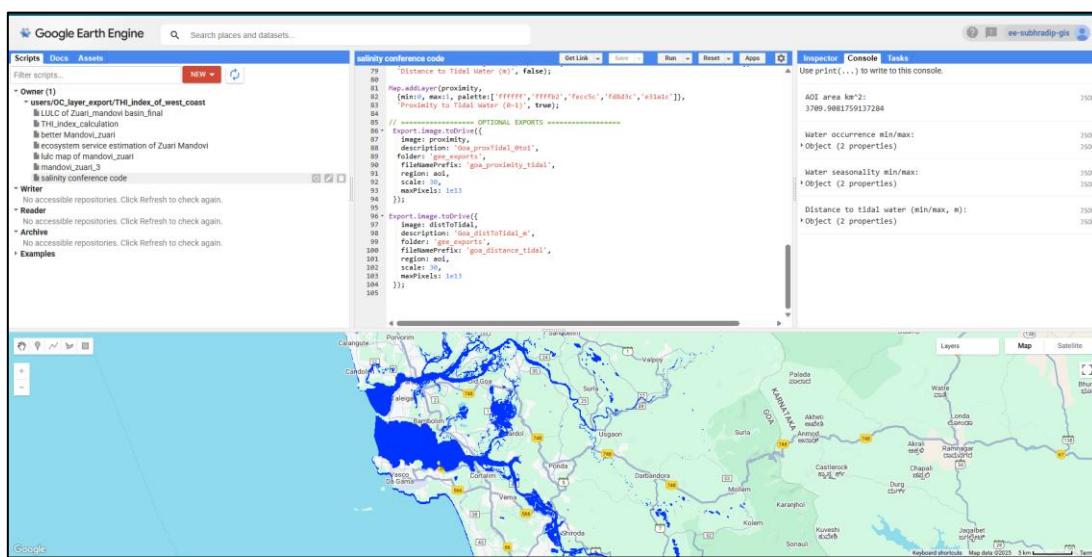
Ecosystem services are commonly grouped into four broad categories. Provisioning services include tangible goods such as food, freshwater, fuelwood, and fibre. Regulating services refer to the regulation of ecological processes, including climate regulation, flood control, carbon sequestration, and water purification. Cultural services capture non-material benefits such as recreation, aesthetic values, spiritual significance, and cultural heritage. Supporting services, such as soil formation, nutrient cycling, and primary productivity, underpin the functioning of all other services. A key principle of ecosystem service assessment is the need for spatial and temporal explicitness. Ecosystem services vary across landscapes and change over time in response to land-use change, management practices, and climate variability. Modern conceptual frameworks therefore emphasise linkages between ecosystem structure, ecological processes, service flows, and human benefits. This integrated perspective is essential for identifying trade-offs and synergies among services and for translating scientific knowledge into practical guidance for natural resource management and policy planning.

Fig. 1: Different type of ecosystem services

Open-Source Geospatial Big Data: A Paradigm Shift

Advances in Earth observation and digital technologies have led to an unprecedented increase in the volume, variety, and availability of geospatial data. This transformation, often described as geospatial big data, has fundamentally changed how ecosystems are observed, analysed, and managed. Open-access satellite archives, climate reanalysis products, and global environmental datasets now provide continuous, long-term records of land, water, and atmospheric processes, enabling ecosystem service assessment at scales that were previously impossible.

Open-source geospatial big data is characterised by large spatial coverage, high temporal frequency, and methodological transparency. Freely available satellite missions such as Landsat and Sentinel offer consistent multi-decadal observations of land-use and land-cover dynamics, vegetation condition, surface water extent, and coastal change. When combined with open climate and environmental datasets, these data allow researchers to link ecosystem structure and function with service provision across regions and time periods.


This shift represents a clear departure from traditional ecosystem service assessments that relied heavily on local field measurements, static maps, or costly proprietary datasets. Open-source geospatial big data enables scalable, repeatable, and cost-effective analyses, making ecosystem service science more inclusive and accessible, particularly in data-limited regions. Importantly, it supports comparative assessments across landscapes, monitoring of long-term trends, and rapid evaluation of management interventions. As a result, geospatial big data has become a cornerstone of modern ecosystem service assessment and a critical enabler of evidence-based natural resource management.

Core Open-Source Platforms for Ecosystem Service Assessment

The assessment of ecosystem services at landscape to regional scales increasingly relies on open-source geospatial platforms that integrate large data repositories, advanced analytics, and reproducible workflows. These platforms operate at different levels—cloud computing, desktop spatial analysis, and scientific programming—but together form a cohesive analytical ecosystem for modern natural resource management. More recently, the integration of GeoAI (geospatial artificial intelligence) has further enhanced the ability to extract meaningful ecosystem service information from complex and high-volume datasets.

Google Earth Engine

Google Earth Engine is a cloud-based geospatial analysis environment that provides direct access to multi-petabyte archives of satellite imagery and global environmental datasets. Its key strength lies in the ability to perform large-scale, multi-temporal analyses without the need for local data storage or high-end computing infrastructure. In ecosystem service assessment, Google Earth Engine is widely used for land use and land cover mapping, vegetation condition monitoring, surface water dynamics, coastal change analysis, and estimation of proxies related to carbon storage and climate regulation. The platform supports machine learning algorithms such as random forests and gradient boosting, enabling rapid and consistent mapping of ecosystem service indicators across large regions.

Fig. 2: Google Earth Engine Code Editor

QGIS

QGIS plays a critical complementary role by providing robust tools for spatial analysis, visualization, and decision-oriented mapping. While cloud platforms excel at data processing, QGIS is often used for refining outputs, conducting spatial overlays, generating zonal statistics, and integrating local datasets such as administrative boundaries or field observations. Its interoperability with GRASS GIS and SAGA allows for advanced terrain, hydrological, and landscape analyses that are essential for understanding ecosystem service distribution and spatial trade-offs at finer scales.

Python, GeoAI, and Scientific Computing Ecosystems

Python has become central to ecosystem service assessment due to its powerful open-source geospatial and scientific libraries. Tools such as xarray, rasterio, geopandas, and scikit-learn enable efficient handling of large spatio-temporal datasets, advanced statistical modelling, and automation of complex analytical workflows. The emergence of GeoAI, which applies artificial intelligence and machine learning to geospatial data, has further expanded analytical capabilities. Deep learning and ensemble models are increasingly used to improve land cover classification, detect ecosystem changes, and model relationships between environmental drivers and ecosystem service supply. Together, Python-based tools and GeoAI approaches support more accurate, scalable, and reproducible ecosystem service assessments suited to contemporary natural resource management challenges.

Methodological Framework for Ecosystem Service Assessment

A robust ecosystem service assessment requires a clear, transparent, and reproducible methodological framework that links geospatial data, ecological understanding, and decision-making needs. Open-source geospatial platforms enable such a framework by supporting systematic analysis across spatial scales and time periods. Although specific methods may vary by ecosystem and service type, most ecosystem service assessments follow a common sequence of analytical steps.

The first step involves defining the spatial boundary of the assessment. This may include administrative units, watersheds, landscapes, coastal belts, or agro-ecological regions, depending on the management objective. Clearly defined boundaries ensure consistency in data extraction, analysis, and interpretation. This is followed by land use and land cover (LULC) characterisation, which provides the structural basis for ecosystem service assessment. LULC maps derived from satellite imagery serve as a primary input for identifying ecosystem types and tracking changes over time. The next step focuses on the derivation of biophysical indicators that act as proxies for ecosystem services. These indicators may include vegetation indices, productivity metrics, surface water extent, soil moisture, or temperature-based variables, depending on the service being assessed. Open-source platforms allow these indicators to be generated consistently across large areas and multiple years, supporting temporal trend analysis and comparison across regions. Subsequently, spatial analysis and aggregation are conducted to identify ecosystem service hotspots, areas of decline, and spatial patterns of service provision. This stage often includes zonal statistics, landscape metrics, and

multi-criteria analysis. Where relevant, trade-offs and synergies among ecosystem services are examined to understand how changes in land use or management affect multiple services simultaneously.

Finally, validation using field data, secondary datasets, or expert knowledge is essential to ensure credibility and applicability of results. Together, these steps form a flexible yet structured methodological framework that supports evidence-based ecosystem service assessment and informs sustainable natural resource management.

Spatially Explicit Valuation of Ecosystem Services

While biophysical assessment helps quantify the supply and distribution of ecosystem services, valuation adds an additional layer by linking ecosystem services to human benefits and decision-making processes. Spatially explicit valuation integrates ecological indicators with economic, social, or policy-relevant metrics, allowing ecosystem services to be compared, prioritised, and communicated in a form that is meaningful to planners and resource managers.

Ecosystem service valuation can be broadly categorised into monetary and non-monetary approaches. Monetary valuation translates ecosystem service flows into economic terms using methods such as market pricing, avoided cost, replacement cost, or benefit transfer. In geospatial frameworks, this is often achieved by linking spatially derived ecosystem service indicators—such as carbon storage, water regulation, or biomass productivity—with location-specific valuation coefficients. This spatial integration enables the identification of high-value ecosystem service hotspots and supports scenario analysis under alternative land-use or management options. Non-monetary valuation approaches, including indices, scoring systems, and participatory assessments, are equally important, particularly where monetary valuation is inappropriate or ethically contested. Spatial mapping of service importance, vulnerability, or demand provides insights into social and ecological priorities without reducing ecosystem values to purely economic terms. Open-source geospatial platforms facilitate such approaches by enabling the overlay of ecological indicators with socio-economic and demographic data.

A critical consideration in spatial valuation is the management of uncertainty and scale effects. Proxy-based indicators, transfer coefficients, and data resolution can influence valuation outcomes, necessitating transparency and sensitivity analysis. Spatially explicit valuation should therefore be viewed as a decision-support tool rather than an exact measure

of ecosystem worth, helping to balance development objectives with long-term ecosystem sustainability in natural resource management.

Applications in Natural Resource Management

The integration of open-source geospatial platforms into ecosystem service assessment has significantly expanded their practical application in natural resource management. By providing spatially explicit and temporally consistent information, these approaches support informed decision-making across a wide range of ecosystems and management contexts. In agricultural landscapes, ecosystem service assessments are increasingly used to evaluate productivity, soil health, water regulation, and carbon sequestration. Spatial analysis of vegetation dynamics, evapotranspiration, and land-use change helps identify areas of declining soil and water services, assess the impacts of management practices, and support climate-smart agriculture planning. Such applications are particularly valuable for balancing food production with long-term ecosystem sustainability.

In forest and plantation systems, geospatial ecosystem service assessments contribute to monitoring biomass, carbon storage, habitat integrity, and regulating services such as climate and hydrological regulation. Time-series analysis enables the detection of deforestation, degradation, and regeneration trends, supporting sustainable forest management and restoration planning. These insights are increasingly used in climate mitigation strategies and biodiversity conservation initiatives.

Coastal and estuarine ecosystems benefit from spatially explicit assessment of services such as shoreline protection, fisheries support, and blue carbon storage. Open-source satellite data and geospatial tools allow for regular monitoring of mangroves, wetlands, and shoreline dynamics, helping to identify vulnerable areas and evaluate the impacts of development and climate-driven hazards. This information is critical for coastal zone management and adaptation planning.

In urban and peri-urban areas, ecosystem service assessment supports the evaluation of regulating and cultural services provided by green spaces, urban forests, and water bodies. Spatial mapping of heat mitigation, air quality regulation, and recreational services informs urban planning aimed at enhancing livability and resilience. Collectively, these applications demonstrate how open-source geospatial ecosystem service assessments can bridge science and practice, supporting sustainable and resilient natural resource management.

Advantages and Limitations of Open-Source Approaches

Open-source geospatial platforms offer several advantages that have made them central to contemporary ecosystem service assessment. One of the most significant strengths is cost-effectiveness, as freely available data and software reduce financial barriers for researchers and institutions, particularly in developing and data-scarce regions. Open-source tools also promote transparency and reproducibility, allowing methods and results to be verified, improved, and reused by the wider scientific community. The availability of long-term, globally consistent datasets enables comparative analyses across regions and time, supporting robust monitoring of ecosystem service dynamics. In addition, open-source platforms facilitate capacity building by encouraging skill development and interdisciplinary collaboration among ecologists, geographers, economists, and data scientists.

Despite these advantages, open-source approaches also face important limitations. Many ecosystem service assessments rely on proxy indicators, which may not fully capture complex ecological processes or local conditions. Limited availability of high-quality field data can constrain validation and introduce uncertainty into spatial analyses. Differences in data resolution, classification accuracy, and methodological choices can influence results, highlighting the need for careful interpretation. Furthermore, effective use of open-source geospatial platforms often requires technical expertise in programming, spatial analysis, and ecological modelling, which may limit adoption among practitioners without adequate training.

Recognising both strengths and limitations is essential for responsible application of open-source approaches. When combined with field observations, stakeholder knowledge, and sound ecological understanding, open-source geospatial platforms provide a powerful and credible foundation for ecosystem service assessment and natural resource management.

Future Directions and Research Priorities

As ecosystem service science continues to evolve, open-source geospatial approaches are expected to play an increasingly strategic role in natural resource management. One key research priority is the deeper integration of field-based observations with remote sensing and geospatial analytics, enabling more accurate calibration and validation of ecosystem service indicators. Strengthening these linkages will help reduce uncertainty associated with proxy-based assessments and improve confidence in spatial valuation outputs.

The application of GeoAI and advanced machine learning represents another important frontier. Artificial intelligence can enhance land-use classification accuracy, detect subtle ecosystem changes, and model complex, non-linear relationships between environmental drivers and ecosystem service supply. Coupling GeoAI with near-real-time satellite data offers opportunities for early warning systems and adaptive ecosystem management.

Future research should also focus on developing region- and ecosystem-specific valuation coefficients that reflect local ecological conditions and socio-economic contexts, rather than relying solely on global averages. In addition, stronger science–policy interfaces are needed to ensure that ecosystem service assessments are translated into actionable guidance for planners and decision-makers. Addressing these priorities will help position open-source geospatial ecosystem service assessment as a core component of sustainable and resilient natural resource governance.

Conclusion

Open-source geospatial platforms have transformed ecosystem service assessment by enabling spatially explicit, transparent, and scalable analysis across diverse ecosystems and management contexts. By integrating Earth observation data, advanced analytics, and reproducible workflows, these approaches allow ecosystem services to be monitored and evaluated in ways that are directly relevant to contemporary natural resource challenges. More importantly, they support a shift from descriptive assessments toward evidence-based, data-driven ecosystem governance.

As pressures from climate change and land-use intensification continue to grow, informed decision-making will depend on timely and reliable information on ecosystem condition and service provision. Open-source geospatial tools provide a practical pathway to bridge science and policy, empowering institutions and practitioners to design resilient, sustainable, and equitable natural resource management strategies. Their effective adoption, supported by capacity building and interdisciplinary collaboration, will be critical for safeguarding ecosystem services and ensuring long-term environmental sustainability.

References

Reddy, C. S. (2021). Remote sensing of biodiversity: what to measure and monitor from space to species?. *Biodiversity and Conservation*, 30(10), 2617-2631.

Paula, A., Figueiredo, A., Pulido, F., & Castro, P. (2023). Could spaceborne multispectral data be used as SMART proxies' indicators for agroforestry ecosystem services?—A systematic review. *Ecological Indicators*, 156, 111162.

Ignatyeva, M., Yurak, V., & Dushin, A. (2022). Valuating natural resources and ecosystem services: systematic review of methods in use. *Sustainability*, 14(3), 1901.

Manley, K., Nyelele, C., & Egoh, B. N. (2022). A review of machine learning and big data applications in addressing ecosystem service research gaps. *Ecosystem Services*, 57, 101478.

Delle Grazie, F. M., & Gill, L. W. (2022). Review of the ecosystem services of temperate wetlands and their valuation tools. *Water*, 14(9), 1345.

Tran, T. V., Reef, R., & Zhu, X. (2022). A review of spectral indices for mangrove remote sensing. *Remote Sensing*, 14(19), 4868.

Troy, A., & Wilson, M. A. (2006). Mapping ecosystem services: practical challenges and opportunities in linking GIS and value transfer. *Ecological economics*, 60(2), 435-449.

Shrestha, S., Poudyal, K. N., Bhatarai, N., Dangi, M. B., & Boland, J. J. (2022). An assessment of the impact of land use and land cover change on the degradation of ecosystem service values in Kathmandu Valley using remote sensing and GIS. *Sustainability*, 14(23), 15739.

Avtar, R., Kumar, P., Oono, A., Saraswat, C., Dorji, S., & Hlaing, Z. (2017). Potential application of remote sensing in monitoring ecosystem services of forests, mangroves and urban areas. *Geocarto International*, 32(8), 874-885.